Application of Müller EDT formulae to 4πβ(LS)-γ coincidence counting

Haoran LIU

National Institute of Metrology, China

Δ Basic principle of $4\pi\beta$ -γ coincidence

The basic principle of coincidence counting can be described through the ideal case with a simple decay-scheme. In this case, the activity A can be calculated using an expression which depends only on the counting rates in the β - and γ - channels, N β and N γ , and the coincidence counting rate Nc:

Correction formulae for coincidence counting

In practice

Coincidence measurement may affected by many factors such as "background", "dead time", "accidental coincidences", " β detector sensitivity to γ rays" and so on, which requires a series of complex corrections.

Dead-time counting losses

all observable count rates are affected by losses due to dead time in detectors and electronic circuits

Accidental coincidences

a resolving time has to be introduced in order to avoid any loss of genuine coincidences; this, in turn, leads to the recording of accidental coincidences

1. Introduction

Correction formulae for coincidence counting

Two types of dead time: Non-Extendable & Extendable

The difference between the two types of dead time is that Non-Extendable dead time is only triggered by every event that is recorded, whereas Extendable dead time is riggered by all input events.

Correction formulae for coincidence counting

Formulae for Non-Extendable Dead Times

The exact formulation to correct coincidence counting data for the effects of non-extendable dead time and accidental coincidences was discovered by Cox and Isham(1977) and developed by Smith (1978;1979; 1987; 1988) to give exact formulae and a simple-to-use high-order approximation.

- Non-Extendable dead times must be imposed to both channels
- ② Formulae for Extendable Dead Times

The exact Formulae to correct coincidence counting data for the effects of extendable dead time was developed by Müller (1977)

• Extendable dead times must be imposed to both channels

Details can be found in ICRU report 52

2.1 $4\pi\beta(PC)$ - γ DCC system

Nal(TI)

Nal(TI)

VYNS foil source

Proportional counter

Δ 2.2 $4\pi\beta$ (LS)- γ DCC system

- The β-channel is equipped with a custom built TDCR counter, and the γ-channel is obtained by using a 3-inch NaI(TI) scintillation detector, which is placed perpendicular below the TDCR counter.
- TDCR counter can move left and right on the horizontal plane to facilitate the replacement of the NaI(TI) scintillation detector.

Δ 2.2 $4\pi\beta$ (LS)- γ DCC system

The $4\pi\beta(LS)-\gamma$ DCC system is made up of three main parts, namely detection setup, data acquisition (DAQ) unit and corresponding DCC software.

3.1 Software-based circuit module

The "software-based circuit module" is used to realize the circuit functions of imposing delay time, dead-time, coincidence resolving-time, and calculating coincidence etc. The module contains four main sub-modules.

TDCR sub-module
 to implement TDCR counting model in β-channel

- a) The imposed dead time is **extendable** and **common** to all channels, that is, an incoming pulse in any sub-channel(A,B,C) will trigger the dead-time window for all three sub-channels.
- b) Any signals in dead time will only extend dead time, but won't start a new coincidence window.
- c) Only the signal not during the dead-time will starts both **dead-time window** and **coincidence window**.
- d) The **total dead-time** of β -channel is obtained by the logic OR of the individual dead-time intervals of the three sub-channels.

β-γ coincidence calculation sub-module

In this module, the coincidence process and the dead-time calculation process are treated independently because they involve the participation of different beta events.

β-γ coincidence calculation sub-module

- a) The coincidence channel will be in the "dead" state, when either the β -channel or γ -channel is in the "dead" state.
- b) The **total dead-time** of coincidence channel is obtained by the **logic OR** of the individual dead-time intervals of the corresponding beta and gamma channels.
- c) In particular, there is a special kind of dead-time interval in β -channel, which is triggered by "out of interest events". For examples, when triple coincidence events are chosen as the output of β -channel, the non-coincident events and double coincidence events are "out of interest events".
- d) The "out of interest events" will only contribute to the total dead-time of coincidence channel, but not to the coincidence calculation.

β-γ coincidence calculation sub-module

- a) For any input event from β -channel or γ -channel, it will open a coincidence window, and then search for the follow-up nearest neighbor event.
- b) If the event occurs in the same channel, the coincidence will not be registered, and then the former event will be discarded.
- c) If the event occurs in another channel, it needs to further determine whether the event falls into the coincidence window. If so, the coincidence channel will register a coincidence and discard these two events. If not, no record of coincidence will be made, and only the former event will be discarded.

3.2 Dead time and resolving time correction

• γ channel: Dead time correction

Both exponential correction formula for extendable dead-time and live time correction formula are applicable.

Exponential formula correction:

Live time correction:

$$R_{\gamma} = \rho_{\gamma} \cdot e^{-\rho_{\gamma} \cdot \tau_{\gamma}}$$

 $R_{\gamma} = \rho_{\gamma} \cdot T_{\gamma}$ Where T_{γ} is the live-to-total time ratio in γ -channel

β channel: Dead time correction

Since TDCR method was applied in β channel, in which the common extendable dead-time was imposed, the formula correction is no longer applicable. So the live time correction formula will be applied.

Live time correction: $R_{\beta} = \rho_{\beta} \cdot T_{\beta}$ Where T_{β} is the live-to-total time ratio in β -channel

3. DCC software

- **(2)** dead-time and resolving-time correction
 - For coincidence channel

$$\begin{cases} R_{c} = R_{f} + R_{\beta\gamma} & \text{Müller correction formula} \\ R_{f} = \frac{R_{\beta}\rho_{g}}{\rho_{\beta\gamma}} \Big[\exp(-\rho_{\gamma}\tau_{\gamma} + \rho_{\beta\gamma}\tau_{\beta}) \Big] \cdot \Big[1 - \exp(-\rho_{\beta\gamma}r_{\gamma}) \Big] \\ + \frac{R_{\gamma}\rho_{b}}{\rho_{\beta\gamma}} \Big[\exp(-\rho_{b}\tau_{\beta}) \Big] \cdot \begin{cases} \rho_{\beta\gamma} \Big[r_{\beta} - |r_{\beta} - \tau_{\gamma} + \tau_{\beta}| \Big] \\ + 1 - \exp(-\rho_{\beta\gamma}|r_{\beta} - \tau_{\gamma} + \tau_{\beta}| \Big) \\ \end{cases} \\ R_{\beta\gamma} = \rho_{\beta\gamma} \cdot \underbrace{\exp(-\rho_{\beta}\tau_{\beta} - \rho_{\gamma}\tau_{\gamma} + \rho_{\beta\gamma}\tau_{\beta})} \end{cases}$$

It is no longer applicable, which is replaced by the live-to-total time ratio T_C of coincidence channel.

3. DCC software

(2) dead-time and resolving-time correction

• For coincidence channel

When using equal dead-time and equal resolving-time for beta and gamma channel, the Müller correction formula can be simplified as follows

$$\tau_{\beta} = \tau_{\gamma} = \tau \qquad r_{\beta} = r_{\gamma} = r$$

$$\begin{cases} R_{c} = R_{f} + R_{\beta\gamma} & \text{Müller correction formula} \\ R_{f} = \frac{e^{-\rho_{\beta\gamma} \cdot \tau}}{\rho_{\beta\gamma}} \cdot (1 - e^{-\rho_{\beta\gamma} \cdot \tau}) \cdot [\rho_{\beta} \cdot (\rho_{\gamma} - \rho_{\beta\gamma}) + \rho_{\gamma} \cdot (\rho_{\beta} - \rho_{\beta\gamma})] \cdot e^{-(\rho_{\beta} + \rho_{\gamma} - 2\rho_{\beta\gamma}) \cdot \tau} \\ R_{\beta\gamma} = \rho_{\beta\gamma} \cdot \underbrace{e^{-(\rho_{\beta} + \rho_{\gamma} - \rho_{\beta\gamma}) \cdot \tau}}_{I} \end{cases}$$

It is replaced by the live-to-total time ratio T_C of coincidence channel.

③ The efficiency extrapolation method

 The efficiency extrapolation method was developed to measure the γ-sensitivity in the βchannel. Two types of extrapolation formulas were applied.

• For each extrapolation, both linear and second order polynomial fitting were used.

Experimental validation of Co-60 measurements at NIM

Algorithm validation by analyzing experimental List mode dataset

Algorithm validation by analyzing simulated List mode dataset

4.1 Experimental validation of Co-60 measurement at NIM

1 Source preparation

4.1 Experimental validation of Co-60 measurement at NIM

(2) Typical spectra measured by $4\pi\beta(LS)-\gamma$ DCC system

Typical beta spectrum

Typical gamma spectrum

4.1 Experimental validation of Co-60 measurement at NIM

③ Time difference distribution

resolving-time: 200 ns

resolving-time: 800 ns

4.1 Experimental validation of Co-60 measurement at NIM

(4) Extrapolation and γ -sensitivity in the β -channel

Method	Slope of fit line	$arepsilon_{eta\gamma}$
$4\pi\beta(LS)-\gamma DCC$	11.24 kBq/g	5.8%
$4\pi\beta(PC)-\gamma DCC$	1.20 kBq/g	0.6%

4.1 Experimental validation of Co-60 measurement at NIM

(5) Result of the validation

	i		, 197.5 –			
Method	A(kBq/g)	u(A)/A				T
4πβ(LS)-γ coincidence counting	196.51	0.29%	197.0 - ວ ອີ ສ196.5 - ສ) 196.5	
4πβ(PC)-γ coincidence counting	196.71	0.24%	196.0 -			<u>-</u>
	I	1	J 195.5 +	4πβ	(LS)-γ	4πβ(PC)-γ

The results are consistent within uncertainty, with relative deviation of -0.10%.

coincidence

coincidence

4.2 Algorithm validation by analyzing experimental List mode dataset

1 Overview of the algorithm validation between PTB and NIM

4.2 Algorithm validation by analyzing experimental List mode dataset

② Data acquisition

4.2 Algorithm validation by analyzing experimental List mode dataset

③ Data analysis

• Similarity

Both codes include several similar functions: Spectrum generation, signal processing, count rate correction, efficiency extrapolation, etc.

• Difference

The codes of NIM and PTB adopt very different strategies for coincidence and dead-time processing.

The SoftKAM approach counting rates for D-G and T-G coincidences are obtained in the same evaluation step, because of the use of common dead-time

4.2 Algorithm validation by analyzing experimental List mode dataset

③ Data analysis - Count rate correction

Campion formula

live time correction

Müller formula

live time correction

$$\rho_{\beta\gamma} = \frac{R_c - (r_\beta + r_\gamma)R_\beta R_\gamma}{(1 - R_\beta \tau_\beta - R_\gamma \tau_\gamma + R_c \tau_m)(1 - R_\gamma r_\beta - R_\beta r_\gamma)}$$
replaced by live-to-real time ratio $T_{L,c}$

$$\rho_{\beta\gamma} = \frac{R_c - (r_\beta + r_\gamma)R_\beta R_\gamma}{T_{L,c} \cdot (1 - R_\gamma r_\beta - R_\beta r_\gamma)}$$

$$\begin{split} \left\{ \begin{aligned} R_{c} &= R_{f} + R_{\beta\gamma} \\ R_{f} &= \frac{R_{\beta}\rho_{g}}{\rho_{\beta\gamma}} \Big[\exp(-\rho_{\gamma}\tau_{\gamma} + \rho_{\beta\gamma}\tau_{\beta}) \Big] \cdot \Big[1 - \exp(-\rho_{\beta\gamma}r_{\gamma}) \Big] \\ &+ \frac{R_{\gamma}\rho_{b}}{\rho_{\beta\gamma}} \Big[\exp(-\rho_{b}\tau_{\beta}) \Big] \cdot \begin{cases} \rho_{\beta\gamma} \Big[r_{\beta} - \big| r_{\beta} - \tau_{\gamma} + \tau_{\beta} \big| \Big] \\ + 1 - \exp(-\rho_{\beta\gamma} \big| r_{\beta} - \tau_{\gamma} + \tau_{\beta} \big| \Big) \end{bmatrix} \\ R_{\beta\gamma} &= \rho_{\beta\gamma} \cdot \frac{\exp(-\rho_{\beta}\tau_{\beta} - \rho_{\gamma}\tau_{\gamma} + \rho_{\beta\gamma}\tau_{\beta})}{I} \end{split}$$

It is no longer applicable, replaced by live-to-real time ratio $T_{L,c}$

4.2 Algorithm validation by analyzing experimental List mode dataset

④ Results: typical spectrum

4.2 Algorithm validation by analyzing experimental List mode dataset

Data format conversion (4)

*	Row *	Chann	el * TimeSta	amp* E	long * Esl	nort *	PU *	Extra *
:	****	*******	*****	*******	****	******	******	*****
*	0 *	3 *	233000 *	20681 *	16204 *	0 *	0 *	
*	1 *	1 *	233000 *	28253 *	18096 *	0 *	0 *	
*	2 *	2 *	233001 *	22577 *	18202 *	0 *	0 *	
*	3 *	3 *	233431 *	1145 *	1174 *	0 *	0 *	
*	4 *	1 *	250195 *	22293 *	19725 *	0 *	0 *	
*	5 *	3 *	250198 *	15822 *	15415 *	0 *	0 *	
*	6 *	2 *	250198 *	16217 *	14665 *	0 *	0 *	
*	7 *	3 *	491146 *	599 *	591 *	0 *	0 *	
*	8 *	3 *	528238 *	11030 *	10051 *	0 *	0 *	
*	9 *	2 *	528238 *	14155 *	13861 *	0 *	0 *	
*	10 *	1 *	528238 *	13811 *	13723 *	0 *	0 *	
*	11 *	3 *	609340 *	1573 *	1596 *	0 *	0 *	
*	12 *	1 *	609354 *	841 *	845 *	0 *	0 *	
*	13 *	3 *	675839 *	27832 *	23469 *	0 *	0 *	
*	14 *	2 *	675840 *	28105 *	23586 *	0 *	0 *	
*	15 *	1 *	675842 *	23412 *	21679 *	0 *	0 *	
*	16 *	2 *	774048 *	19019 *	17614 *	0 *	0 *	
*	17 *	1 *	774048 *	17855 *	17047 *	0 *	0 *	
*	18 *	3 *	774049 *	17056 *	16571 *	0 *	0 *	
*	19 *	3 *	774362 *	1091 *	1125 *	0 *	0 *	
*	20 *	1 *	778832 *	2635 *	2654 *	0 *	0 *	

	■ DBJ00035_2310-02_P1_012_0.csv × +
	文件 编辑 查看
>	文件 编辑 查看 Time unit conversion BOARD;CHANNELFIMETAG;ENERGY;ENERGYSHORT;FLAGS 0;0;20787595000;6691;0;0 0;0;41245420000;2564;0;0 0;0;43359049000;1473;0;0 0;0;89164717000;7659;0;0 0;0;226153439000;3894;0;0 0;0;240289818000;4619;0;0 0;0;338555458000;13066;0;0 0;0;357038327000;3784;0;0 0;0;388174872000;2891;0;0 0;0;429556479000;3872;0;0 0;0;445102358000;3049;0;0
	0;0;511708610000;13513;0;0 0;0;516524353000;3023;0;0 0:0:505504506000;5350:0:0
	0,0,3%33004300000,3230,0,0

PTB data format

NIM data format

中国计量科学研究院 National Institute of Metrology, China

4.2 Algorithm validation by analyzing experimental List mode dataset

(5) Results: T-G coincidence

T-G extrapolation result of NIM

T-G extrapolation result of PTB

The relative deviation of T-G coincidence results between PTB and NIM is only about **0.004%**.

中国计量科学研究院 National Institute of Metrology, China

4.2 Algorithm validation by analyzing experimental List mode dataset

5 Results: D-G coincidence

D-G extrapolation result of NIM

D-G extrapolation result of PTB

And the relative deviation of D-G coincidence results between PTB and NIM is only about **0.03%**.

4.2 Algorithm validation by analyzing experimental List mode dataset

(5) Results: summary

Institution	Extrapolation mode	Activity (kBq/g)
NIM	T-G	101.545
	D-G	101.548
ртр	T-G	101.540
FID	D-G	101.522

- The analysis results for the NIM and PTB codes were in excellent agreement.
 - The maximum relative deviation for all four results does not exceed 0.03%.

4.3 Algorithm validation by analyzing simulated List mode dataset

① Generation of simulated list-mode digital dataset

- □ Geant4 was chosen to generate the list-mode digital datasets for its capability to model radionuclides as sources and simulate particle emissions from related cascade with time correlations across transitions and de-excitation processes, and its flexibility in adjusting the output of required data and format.
- **D** The geometric parameters of the model was referenced from the $4\pi\beta(LS)$ - γ systems at NIM

Simulated List mode dataset

4.3 Algorithm validation by analyzing simulated List mode dataset

② Typical spectra

4.3 Algorithm validation by analyzing simulated List mode dataset

② Results: T-G and D-G coincidence

1.2000E+003 1.0000E+002 8.0000E+002 4.0000E+002 2.0000E+002 D-G coincidence 0.0000E+000 0 0.2 0.4 0.6 0.8 1

True Activity: 1000.05 Bq

T-G coin: 1000.95 Bq

Relative deviation: 0.09%

True Activity: 1000.05 Bq T-G coin: 1000.76 Bq Relative deviation: 0.07%

Physikalisch-Technische Bundesanstalt National Metrology Institute Marcell Takacs (PTB) Ole Nähle (PTB) Karsten Kossert (PTB)

Bureau International des Poids et Mesures

Romain Coulon(BIPM)

Zhihao Fan(NIM)

Thanks for your attention